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Abstract — In order to enhance torque density of five-
phase permanent magnetic synchronous motor (PMSM) with 
third harmonic injection, optimum seeking method for 
injection ratio of third harmonic was proposed adopting 
theoretical derivation and finite element analysis method, 
under the constraint of same amplitude of current and air gap 
flux. The mathematic model which gave the theoretical proof 
of enhancement effect on torque density by third harmonic 
injection was deduced. A five-phase PMSM prototype with 
quasi-trapezoidal flux pattern was designed. Simulation and 
experimental results prove that using the proposed optimum 
seeking method, the torque density of five-phase PMSM can 
be enhanced upto 20%, without any increase of power 
converter capacity, machine size or iron core saturation. 

I. INTRODUCTION 

In the application fields demanding high power grade 
and high reliability, such as high-power marine, traction, 
and aerospace applications, the interest in multi-phase 
machine drive has substantially increased during the last 
decades because of their enhanced fault tolerance, high 
power density, high efficiency, high quality torque with 
lower torque ripple, and the reduction in power ratings for 
individual power semiconductor devices [1]. Compared to 
the conventional three-phase counterparts, the multi-phase 
machines offer additional degrees of freedom essentially 
which can be used for fault-tolerant operation [2-3], multi-
motor series/parallel-connected drive [4] and torque density 
enhancement [5-7]. The last advantage has shown good 
prospects for industrial applications. It is based on that the 
interaction of the spatial and electrical harmonics of the 
same order can generate a component rotating at 
fundamental frequency. This component is contributes to 
positive torque, also providing a flattened MMF shape 
which is useful to avoid saturation and improve iron 
utilization. 

For five-phase PMSM (FPMSM), this enhancement 
benefits from the third harmonic airgap flux, which 
effectively increases the magnitude of the fundamental flux 
density, without saturating the machine iron, and the third 
harmonic component also contributes to positive torque 
meanwhile. The quasi-trapezoidal air-gap flux density due 
to the combination of the two fluxes is essential for torque 
density enhancement, assuming the same peak air-gap flux 
density and phase current amplitude. To get this aim, the 
stator should be wound such that the induced back EMF is 
quasi- trapezoidal and is supplied by combined sinusoidal 
and third harmonic current. So this type of FPMSM is 
called third harmonic injection FPMSM (THI-FPMSM), 
which benefits from the controllability of PMSM and high 

torque density of BLDC. Little research has been presented 
relating to determination of windings, permanent magnet 
shapes and third harmonic current injection ratio. 

This paper aims at improving torque density. Theory 
basis that third harmonic current generates positive and 
constant torque is given via deduced mathematic model. 
The design method for a prototype with quasi-rectangular 
back EMF and optimization method for third harmonic are 
described. Simulation and experimental results verify the 
torque density of THI-FPMSM can be enhanced greatly by 
third harmonic injection. 

II. MODELING OF THI-FPMSM 

According to amplitude invariant criterion and extended 
symmetrical component method, the transformation from 
natural coordinate system to synchronization rotating 
coordinate system can be deduced as: 
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where c(·) and s(·) indicate cosine and sine, respectively. 
 i=-(r-iα), r is angular displacement of rotor, and α=2π/5. 

Using the transformation of (1), the fundamental and 
third variables are mapped into two orthogonal subspaces 
that are referred as d1-q1 and d3-q3 from now on. So the 
mathematic model of THI-FPMSM under orthogonal 
rotating coordinate system is  
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For id1=id3=0, the electromagnetic torque can be written 
as  
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where P denotes the number of pole pairs, KT1≡5Pm1/2 
and KT3≡15Pm3/2 are torque coefficients of fundamental 
and third harmonic current respectively. 
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III. OPTIMUM DESIGN FOR THI-FPMSM DRIVE  

Third harmonic current injection ratio k3
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A. Prototype machine design 

This paper designs an eight-pole FPMSM with five 
identical quasi-concentrated windings as sketched in Fig. 1. 
The term of quasi-concentrated is used since each phase 
winding consists of six fractional slot concentrated winding 
cells, which are in serial connection. Fig. 2 shows the cross 
section and flux density plots only with the permanent 
magnet excitation. The magnetic steels of rotor are beveled 
to inject low-order harmonic and constrain high-order 
harmonic in the air-gap magnetic field. 

Fig. 3  Optimal design for third harmonic injection ratio 
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Fig. 4  Measured back-EMF of THI-FPMSM prototype 

Fig. 5 shows the currents of phase A and B when k3=0 
and k3=0.1895. Under this two situations, the amplitude of 
currents is identical, nevertheless the output torque 
increases from 14.04 N·m to 16.9 N·m, about 20.4%. 
Obviously, torque density can be enhanced by injecting the 
third harmonic current by proper ratio and phase without 
increasing current amplitude. 

Fig. 1  Winding connections of phase A and B 
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Fig. 2  Cross section and flux density under no load (one quarter) 

B. Third harmonic current injection ratio optimization 

Considering the phase current amplitude is restrained by 
the power capability of inverter, the third harmonic current 
injection ratio k3 must be optimized to maximize the torque 
density of THI-PMSM, according to the values of KT1 and 
KT3. The phase current of phase A can be given as 

Fig. 5  Currents of phase A and B when (a) k3=0 (b) k3=0.1895 
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